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ABSTRACT

This is an Interim Report discussing the develop-

ment of a theory for describing the response of solid

bodies to high intensity impulsive loads, including the ef-

fect of material strength.

Inclusion of material strength requires a full

thermodynamic treatment, which has not been satisfactorily

formulated. An approximation is considered in which entropy

production due to plastic flow is neglected. In the result-

ant theory, stresses are related to elastic strains through

an isentropic strain energy potential, and the elastic

strains are limited by a yield condition. Results of an

analysis of dynamic compressibility data for copper to 2.7

Mbar by second order elasticity theory are very encouraging.

Analysis of experimental plane wave propagation data for

aluminum with a variety of yield functions indicates that

presently measurable quantities do not provide a sensitive

means of determining the yield function. Other configura-

tions may be more suitable, but require development of two-

dimensional solution methods.
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1. INTRODUCTION

A number of engineering problems involving very

high velocity impact, or other very rapid modes of deposi-

tion of large amounts of energy in a structure have recently

become important.

The first approach to such problems has involved

the so-called "hydrodynamic" assumption. It is assumed that

the shear stress which the material is able to support is al-

ways negligible in comparison with the compressive stress,

and the material is treated as if it were a fluid. A suitable

iequation of state" is used, which is deduced from plate im-

pact experiments via the Mie-Grneisen theory, and at higher

pressures is deduced from the Fermi-Thomas-Dirac theory.
2

While the "hydrodynamic" theory has been found to give rea-

sonably good results for many problems, it is not able to ac-

count for important effects which are traceable to the influ-

ence of material strength.

It is therefore necessary to inquire if material

strength can be included in the theory. The kinematical

equations of continuity and motion, expressing the principles

of conservation of mass and momentum, are well known. To

these must be joined constitutive relations expressing the

reaction of the material. Two important problems arise.

The first problem centers on the question whether

solutions can be found for this set of nonlinear differential

equations for specific initial and boundary conditions. The

question must await formulation of specific constitutive re-



lations, but the possibility of obtaining analytical solutions

to nontrivial problems seems remote. There remains the pos-

sibility of numerical integration, already widely used for

"hydrodynamic" calculations. Such a method of solution neces-

sarily cannot provide fine detail due to limitations on com-

puter storage and running time and accumulation of truncation

and round-off errors. Again, the question whether sufficient

detail can be reproduced so that the solution is an improve-

ment over a "hydrodynamic" solution cannot be fully assessed

at this time.

The second problem centers on the specification of

the constitutive relations. Constitutive relations have been

formulated for certain ideal materials; e.g.,viscous fluid,

linear elastic solid, perfect plastic solid, etc. It is not

immediately evident how the constitutive relations are to be

formulated for the present case. Only for specially simple

ideal materials do the constitutive relations involve the

kinematical variables, stress and strain, alone. It is neces-

sary, in general, to consider also thermodynamic variables and

the interaction between thermodynamic and kinematic changes.

A satisfactory general thermodynamic treatment for a solid has

so far not been given.

The problem therefore is not so much one of measure-

ment of material properties for insertion in the constitutive

relations. It is first necessary to achieve a satisfactory

formulation of the constitutive relations and to specify

which physical properties are relevant. There is a funda-

mental aspect of the theory of continua which renders this

difficult. The constitutive relations must describe the be-

havior of a volume element of the material. This behavior

cannot be deduced from gross measurements on a body of the

material without recourse to the theory itself.
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Thus, in order to deduce stress-strain relations from

measurements of elongations produced by surface tractions ap-

plied to a body of the material under study, it is necessary'to

analyze the deformation field correctly. For a tensile speci-

men, the deformation field may be assumed to be particularly

simple for small elongations, so that the stress-strain rela-

tion can be deduced directly from the tensile force-elongation

data. As soon as the specimen necks- this can no longer be

done. When a tension test is conducted at high rates, it would,

in addition, be necessary to consider thermodynamic changes ex-

plicitly. Failure to analyze the experiments correctly prob-

ably accounts for apparent contradictions in the dynamic "materi-

al properties" reported by various experimenters.

The present paper is an interim report on an investi-

gation of the possiroility of correcting the "hydrodynamic"

theory to include the gross observable effects of material

strength. Some pertinent thermodynamic relations are re-

viewed. In view of the fact that the thermodynamic treatment

has not been completed, some interim approximations are sug-

gested which depend on the working hypothesis that the yield

stress is not greatly increased above its static value, and

which permit uncoupling of kinematic and thermodynamic con-

siderations, leading to a fairly simple formulation of the

constitutive relation. A beginning is then made in the con-

sideration of two aspects of the resultant theory; viz.,the

relation between stress and the recoverable (elastic) part

of the strain, and the yield condition which in effect limits

the recoverable part of the strain.

3



2. SUMMARY

2.1 Kinematical Relations

The Eulerian equations of continuity and motion are

well known

+ P u ij =  (3.2)*

Tijj = P(u i - F.) (3.3)

To these must be joined constitutive equations

in the general form

f (ij 9 uij (3.4)

expressing the behavior of the material, before proceeding

to solutions of problems with suitable initial and boundary

conditions. The possibility of finding closed form solu-

tions to these equations, which contain both geometrical and

physical nonlinearities is remote. For special cases, the

method of characteristics may prove useful, but a general

discussion cannot be given until a specific constitutive re-

lation is inserted.

There is a possibility that numerical integration

of the equations in finite difference form may provide solu-

tions sufficient for engineering purposes for some problems.

The principal difficulty in the construction of finite dif-

ference analogs to Eqs. j.2, 3.3 and 3.4 is the representa-

tion of stress and deformation gradients. Schemes in which

Equation numbers in this section are the same as those in
the main body of the text. For definition of symbols see main
text. For notation, see note at end of the List of Symbols.
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averages over nearest neighbors are used, which are employed

in Eulerian fluid flow problems, could probably be extended

to the present case. Alternatively, the Lagrangian equa-

tions, in which the difficulty does not arise, could be used

for motions involving moderate distortions. A finite dif-

ference code could be programmed, in which the constitutive

relation appears as a subprogram, resulting in considerable

flexibility. The constitutive relation could then be easily

altered without disturbing the control program or calcula-

tions involving the equations of continuity and motion.

2.2 Constitutive Relation

A discussion of the constitutive relation neces-

sarily requires consideration of thermodynamic relationships.

Only in very special circumstances can the state of the materi-

al be described in terms of kinematical variables alone. The

main thermodynamical results are reviewed. In particular, the

principle of conservation of energy leads to the relation that

the increase in internal energy is due to the external stress

powerP E and the external heat addition QEU

PS = E + QE (4.2)

Definition of entropy leads to an equation for en-

tropy production, which is found to be due to the difference

between the external stress power and the internal stress

power PI i.e.,to the dissipative stress power, and to the

external heat addition

PTs = PE - PI + QE (4.13)

The complete set of equations to be considered are

then the equation of continuity and motion, Eqs. 3.2, 3.3,

6



the energy and entropy equations Eq. 4.2, 4.13 together with

a caloric equation of state governing material behavior

g (s , y) (4.5)

where v determine the mechanical substate, and phenomeno-

logical relations governing dissipative and heat-flow

mechanisms.

Under special circumstances, such as when the

motion is entirely adiabatic or isothermal, some or all of

the thermodynamic quantities can be eliminated from explicit

consideration, and the material can be adequately described

by a simple stress-strain relation. For this reason, we

prefer to include the thermodynamic relations as part of the

constitutive relations.

One assumption which leads to such simplification

is the "hydrodynamic" assumption, i.e., the yield stress is

always small compared to the pressure. With the further

assumption that spherical stress work is nondissipative and

spherical strain is entirely recoverable, this leads to the

result that the dissipative work done is negligible com-

pared to the spherical stress work. For an adiabatic motion

(QE = 0), we see from Eq. 4.13 that s = 0 while Eq. 4.2 be-

comes simply

p = p P/P (4.36)

i.e.,the energy equation for an ideal fluid. Entropy changes

at possible shock waves may be handled by the Rankine-

Hugoniot relations, or by the introduction of the usual type

of artificial viscosity smoothing function which is so formu-

lated that its effect is negligible everywhere except in

areas of very high gradient, such as in shock zones.
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As soon as the yield stress cannot be assumed

small in some regions of the motion, the "hydrodynamic" as-

sumption is violated, and it is necessary to consider a full

thermodynamic treatment of the motion. However, a fully

satisfactory thermodynamic treatment has so far not been

given. An interim formulation, in which the entropy pro-

duction due to dissipative plastic flow is still neglected

may be considered until a thermodynamic treatment becomes

available. While this may provide some correction to the

"hydrodynamic" theory, the basic assumption (s = 0) is vi-

olated most seriously in just those areas where the effect

of material strength is likely to be greatest, i.e.,areas

where a large amount of plastic flow occurs at low pressure.

The energy equation is modified simply to

ii .  (4.39)

where u' is the elastic part of the deformation, which is

limiteo, in effect, by a yield condition.

2.3 Elastic Behavior

We turn now to preliminary considerations of the

elastic stress-strain relationship Eq. 4.39, and of the

yield condition.

Following usual practice, the strain energy po-

tential Pe = T(!), where the strain E is defined by

kj= kj + u.k - uij uk) (5.1)

is expanded as a power series in the strain invariant I,, 12,

13

2 3

= al1 + bl + c12 + Il1 + m11 12 + n13 + • (5.2)

8



So that the theory agrees with the classical

theory for infinitesimal strains, we set a = 0, b = 1/2 x

(?\ + 2p.), c = - 2 where ?\ and 4 are the adiabatic Lam6

constants.

The stress-strain relation is then obtained from

'ij = (bik - 2c ik) (CI) kj s (5.3)

To complete the description, the material con-

stants k. 4, 1, m and n must be evaluated for a particular
value of entropy. A parallel development exists for iso-

thermal conditions, when the strain energy potential is

equal to the free energy P* = i( ). The constants ?,, p., 2,

m and n will then refer to a particular value of temperature.

The first-order coefficients, the adiabatic Lam6

constants, are best determined by ultrasonic pulse-echo

techniques. Such experiments can also be performed under

hydrostatic pressure, although the attainable pressures are

limited to about 10 kb by present techniques, from which

pressure derivatives of the elastic moduli can be determined.

For an isotropic material under hydrostatic pressure, only

two distinct wave velocities can be measured, the longitudinal

wave velocity, corresponding toV7K + 4G/3)/P and the trans-

verse wave velocity corresponding to _G/-, where K is the

Bulk Modulus, and G is the Shear Modulus.

By considering a state of strain consisting of a

(large) spherical strain c, and an infinitesimal perturba-

tion ers

rs rs + -rs (5.9)

it is possible to evaluate the effect of strain on the

9



Bulk Modulus and Shear Modulus

C = ( - 2) / 2L - 6(6\ + 8p. - 3m + n)

(5.14)

_ e 2 (54C + 12m)

K = 1(l- 2 c) 5/2 (j + 2 ) -(21X + 14-t- 54

(5.15)

- 18m - 2n) - 2(2431 + 81m + 9n)c

Thus, measurements of pressure derivatives of the

elastic moduli should provide two independent relations for

the three second-order constants £, m, and n; but this is not

sufficient to determine these constants separately, and a

further independent measurement must be sought.

Information relevant to the second-order elastic

constants may also be deduced from adiabatic compressibility

data under spherical stress. For a purely spherical stress,

we find

P P- P 3 + 24) + 2 (27L + 9m + n)

(5.8)

f +(2 72 + 9m + n) PO2/

Adiabatic and isothermal compressibility data may

be deduced from hydrostatic compression experiments at pres-

sures up to luU kb, and from dynamic Hugoniot measurements

from plate impact experiments up to 4 Mb, via the Mie-

Gruneisen theory. If sufficient terms are included in the

10



expansion, Eq. 5.2, then from Eq. 5.8 we see that a plot of

2 /3P VS (PiPo)

(P/Po)7/3 - (P/Po) /3

should be a straight line. This is in fact found to be so

for copper (figures 5.1, 5.2), the only material for which

the comparison has so far been made.

Furthermore, the straight-line fit yields a value

of (271 + 9m + n). For the zero temperature isotherm, this

is found to be - 5860 kb, for the isentrope through P = 0,

T = 2930 K, we find a value - 5840 kb, while for the isentrope

through 500 kb on the hugoniot we find a value - 4460 kb.

The experiment of Altshuler 3 5 gives additional in-

formation. In this experiment, the speed of a relaxation

wave propagating into shock compressed material is determined.

The "overtaking-relaxation method" yielded the speed of the

bulk wave which was found to correspond closely to ,K de-

termined from adiabatic compressibility data estimated from

slopes of measured shock Hugoniots. However, the "lateral

relaxation method" led to velocities which were higher than

the bulk wave velocity and corresponded to the longitudinal

wave velocity. The measured velocity of a longitudinal re-

lease wave moving into copper shock compressed to 407 kb

was found to be 6.33 Km/sec, yielding(K + 4G/3) = 4290 kb.

Rough interpolation of the bulk modulus for these conditions

gives K = 3160 kb, so that we have, very approximately,

G = 850 kb, which is nearly twice the value at zero pressure.

A comparison with the information deduced from

pressure derivatives of the elastic moduli measured by pulse-

echo techniques should be possible, but this calculation has

not yet been performed.

11



2.4 Yield Behavior

We turn now to investigate certain aspects of the

yield condition relevant to the present problem. There is

a large number of effects which may alter the yield condi-

tion. Among these one might mention temperature, strain-

rate, strain hardening, and, under extreme conditions, the

yield stress may also conceivably depend on the pressure.

It would probably be undesirable, even if it were possible,

to incorporate a physically realistic yield dependence on all

of the relevant factors. Rather, we seek a rough description

which will be adequate for engineering calculations and

which will reflect only the most important gross effects.

It is not yet clear which effects are the most im-

portant under conditions of high pressure and strain rate,

and many contradictory statements appear in the literature

with regard to the magnitude of one or the other of the

above-mentioned effects.

We therefore choose the simplest possible heuristic

approach to investigate the effects of various types of postu-

lated behavior on observable response and seek to compare the

predicted response with experimental observations.

The yield behavior is best observed at low pressure

and it is sufficient initially to limit the discussion to in-

finitesimal strain. A generalization of the Malvern theory
3 6

gives the stress-strain relation

= 2G i + (K - 2G/13)5ij 21k - 2G g(T*) __Ll (6.11)

Here g(T") is a strain-rate function, where T*, the

von Mises effective overstress, is defined by T = T - a, and

-- 2 2 )2

T1- T2) + (T2 - T3 ) + (T3 - T2) (6.7)

12



Correspondingly, 7 is formed from the stress a

which satisfies the yield condition.

We therefore need to evaluate the yield stress

and the relaxation function g in order to complete the

description of the material.

It is difficult to decide on the functional form

of the relaxation function g. The best that can be done at

present is to choose a simple functional form for g which is

consistent with current theories of the physical processes

taking place and then to use experimental results to put

bounds on the values of the coefficients. With the tenuous

justification that plastic flow is due to propagation of

dislocations and is a thermally activated process, the re-

laxation function is given a form

g(T*) = a T e,b (6.31)

where a and b are to be found empirically.

The yield condition is also difficult to evaluate.

It is quite likely that the yield condition may differ from

that applicable to "static" conditions. In the time taken

for static tests there may be, for example, ageing and self-

annealing mechanisms active which are inoperative in the time
L1

available under dynamic conditions. Bell and Werner have

found, for example, that the stress-strain curve deduced from

a rate-independent analysis of wave propagation in rods

differs fror the stress-strain curve obtaLned in a static

tensile test.

The information on yield stress applicable to
"static" conditions cannot be taken over directly for dynamic

problems; it is again necessary to assume a yield behavior

and to evaluate the constants empirically.

13



Some simple descriptions of yield and relaxation

behavior are investigated for uniaxial strain configurations.

Four different types of behavior are considered: (1) rate in-

dependent with constant yield, (2) rate independent with pres-

sure dependent yield, (3) rate independent with strain harden-

ing, and (4) constant yield with strain-rate behavior. The

results indicate that it is not possible to distinguish be-

havior from measurable quantities; rear surface motion and

stress or interface stress, for the assumed range in variables

and uniaxial strain conditions. It is desirable to extend the

investigation to higher pressures and to other configurations,

but methods of solution for such cases must be developed be-

fore the experimental results could be interpreted.

2.5 Conclusion

It is necessary that each of the approaches con-

sidered here be pursued further. In particular it is ur-

gently necessary to pursue the thermodynamic treatment of

the material, since the proposed approximations are suspect.

The agreement obtained between compressibility

data and second-order elasticity theory is encouraging, and

indicates that further investigation is warranted. The

elastic description has not been completed. In particular

another independent measurement of the second-order elastic

constants must be sought.

Description of the yield behavior is far from

complete. It appears that the simple rate-independent elas-

tic-plastic theory is in accord with what little experimental

evidence exists for uniaxial strain configurations at low

stresses, but there is reason to believe that this will not

be so for other configurations. Since solutions are ob-

tainable only for uniaxial strain at the present time, further

progress must await development of solution methods for more

complex configurations.
14



3. KINEMATICAL RELATIONS

3.1 Equations of Motion

We consider a body initially in a state B0 . The co-

ordinates of a particle P referred to a Cartesian common frame

are denoted by ai . At time t, the body is in a distorted

state B, and the coordinates of the particle P referred to the

common frame are now xi, related to the ai by the reversible

transformation law governing the motion.

x i = xi(a, t) a i = ai(x, t) (3.1)

For our present purposes it is not necessary to con-

sider general curvilinear coordinate systems, and to pursue the

argument in fully invariant form.

The displacement of the point P is given by u. =

xi - a. The velocity of the point P is given by xi = ui.

We limit the discussion to a nonpolar, isotropic,

homogeneous medium.

Taking the Eulerian viewpoint, by observing a

volume element with sides dxi with particles flowing through

it, and taking ai as a function of xi, Eq. 3.12, the equation

of continuity expressing the principle of conservation of.3
mass is

+ P u. = 0 (3.2)
1,j

while the equation of motion, expressing the principle of

conservation of momentum becomes

Tijj = i - Fi) (3.3)

15



where T is the symmetric Eulerian stress tensor, P the den-

sity, anG F the specific body force.

Alternatively, the Lagrangian viewpoint may be

taken, by observing a volume element with sides dai contain-

ing a fixed collection of particles, and taking xi as a func-

tion of ai , Eq. 3.11. However, it is then necessary to refer

both body force and stress tensor to the original state of

the body Bo. The Lagrangian force and stress tensors thus

lose direct physical meaning. Moreover, the Lagrangian

stress tensor is not symmetrical. This can be remedied by

using the Piola-Kirchoff stress tensor, at the cost of in-

creasing the complexity of the equation of motion. For pres-

ent purposes the Lagrangian viewpoint is not helpful, and

will not be pursued here.

The equations, Eq. 3.2, 3.3, cannot be integrated

until constitutive equations are supplied, which describe

the reaction of the material to the deformation. These re-

late the stress and deformation tensors, and take the gen-

eral form

f( j ,  ui, j  . . . ) = 0 (3.4)

and will be considered in detail in Section 4.

3.2 Characteristics Method of Solution

In certain specially simple cases, the equations

3.2, 3.3 may be reduced to a system of p. quasi-linear equa-

tions in ji unknown dependent functions , of v variables
V

x

BV + D = 0 T) = 1, , (3.5)

p.

where B and D are functions of p4 and x v . If these equa-

16



tions are totally hyperbolic 4 then there exist (v - 1) V

dimensional characteristic surfaces through any point x such

that linear combinations of the equation 3.5 involve deriva-

tives of T only in directions lying in these surfaces. This

results in a decisive simplification only under special cir-

cumstances, i.e.,when these derivatives are all in the same

direction, or when the number of independent variables V is

equal to 2.

For a solid which can support a shear stress, only

the latter case has been explored, e.g.,uniaxial motion of a

solid with a purely mechanical elastic-plastic stress-strain

relation.5 J6 Even in this case, the characteristic method

is unwieldy except for specially simple boundary conditions.

It is not possible to pursue the argument further

at this point for the case v > 2, until a specific constitu-

tive equation has been inserted, since reduction of Eqs. 3.2,

3.3, 3.4 to the form Eq. 3.5, and the conditions under which

Eqs. 3.5 are totally hyperbolic depend on the specific form of

the constitutive relation.

3.3 Finite Difference Method of Solution

One method of solution of the initial value prob-

lem posed by Eqs. 3.2, 3.3 and 3.4 together with suitable

initial and boundary conditions is to replace the deriva-

tives by suitable finite difference approximations, and to

carry out the integration numerically. The technique has

been used extensively for the "hydrodynamic" problem.
7

As with fluid flow problems, care will have to be

taken to ensure that the solution remains continuous every-

where, if necessary by the introduction of suitable smoothing
8

functions into the constitutive relation.
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In the finite difference method, the continuum is

represented by a finite number of points at distances Ax.
1

apart, and the continuous solution is represented by a series

of average values of the dependent variables over the inter-

vals Axi, At. The original state Bo of the body is thus

represented by a finite number of discrete points. The co-

ordinates of a discrete point P in Bo are a i = (TAx1 , Ax 2 ,

CAx3 ) where 71, 6, C are integers.

The deformed state of the body B'is also repre-

sented by the same number of discrete points, with coordi-

nates of P in B, xi, being given by the transformation law

Eq. 3.1. These coordinates do not in general coincide with

integral multiples of Axi.

The main difficulty in constructing an Eulerian

finite difference scheme consists in obtaining suitable

finite difference representations of the displacement and

stress gradients in Eqs. 3.2, 3.3. Several ingenious

schemes have been developed for the case of fluids, e.g.,

Harlow's Particle and Force code 9 and Kolsky's nearest neigh-

bor code. In these codes the nearest neighbors of the par-

ticle currently being considered are used in an averaging

scheme to deduce the required gradients. Some such scheme

could undoubtedly be used in the present instance also.

There are other well-known difficulties associated with the

Eulerian finite difference method. One of these is that

boundaries between different materials are subject to dif-

fusion.

Both of the above difficulties are avoided in the

Lagrangian representation. Gradients are taken with respect

to a. in the initial configuration, and particles are thus

always in the appropriate positions for constructing finite

difference approximations. The stress tensor must be re-

ferred to the initial configuration, but this does not pose
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any special problem. However, the difficulties associated

with severe distortions of the Lagrangian mesh are well known.
1 1

For moderate distortions, however, the formulation of Lagrangian

finite difference equations should not pose any serious problem.

The feasibility of carrying out specific calcula-

tions on present computers in terms of storage and machine

time cannot be adequately assessed until the finite differ-

ence equations are formulated, and a specific problem is con-

sidered. However, some general remarks are possible. We

consider the two-dimensional case (rectangular Cartesian or

cylindrical polar coordinates).

The essential complexities introduced when material

strength is included are the introduction of three stress

components (T11, T 1 2 , * 2) in place of the scalar pressure,

three deformation gradients (u u() u ) in place of

the scalar density, and the introduction of three constitu-

tive equations in the place of one. The latter are also

somewhat more involved, due to the necessity for a yield

condition (discussed in the following section) and the fact

that the constitutive equations are expressed in terms of the

deformation gradients.

In a fluid calculation, it is generally necessary

to store at least eight quantities at each mesh point; for

example position r, z, velocities u, v, pressure p, density

P, internal energy F, and a parameter identifying the par-

ticle, i.e., mass of the particle m. In the present case,

only four kinematical variables are added, two additional

stress components and two additional deformation components.

In addition there may be one or two extra thermodynamic

variables.

The time required for computation of the equations

of continuity, motion and constitutive relations will cer-

19



tainly be increased. However, a part of the total computa-

tion time is consumed in logic necessary to advance the cal-

culation. Thus it seems reasonable to suppose that both

computer storage and running time requirements will not be

increased by much more than a factor of 1.5 to 2 for a prob-

lem in which material strength. is introduced, over an equiva-

lent fluid problem. Such an increase should not be prohibi-

tive.

It might be argued that when material strength is

introduced, a much finer mesh size will be required to re-

solve the fine detail of elastic-plastic wave interactions.

If such resolution is required, then this is certainly true.

However, numerous calculations have been performed using a

one-dimensional finite difference code6 in which material

strength was introduced, and various mesh sizes were used.

Surprisingly, when extremely coarse mesh sizes were used,

stress profiles still approximated the exact solution

closely, although much of the fine detail was obliterated

by the "smearing" commonly present in finite difference so-

lutions. Moreover, displacements, which are integrated

quantities, were reproduced very well.

The finite difference method thus removes much of

the fine detail of the numerous wave interactions which makes

computation of elastic-plastic problems by characteristic

methods so laborious, while preserving nearly correct aver-

age behavior, the degree of "filtering" of fine detail de-

pending on the coarseness of the mesh size. It is expected

that a two-dimensional code would behave similarly. The

mesh size would thus depend on the degree of detail re-

quired in the solution. For some purposes, this may not re-

quire a decrease in mesh size over that suitable for an equiva-

lent fluid calculation.
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It would thus appear from these preliminary con-

siderations that it is feasible to write a finite difference

code, particularly using the Lagrangian viewpoint, and to

carry out useful calculations on presently available computers.

Detailed estimates of storage and computation time requirements

are impossible until such a code is formulated, and some ex-

perience has been gained in its use, so that a realistic assess-

ment of required mesh sizes for specific requirements can be

made.

It might be noted that finite difference approxima-

tions can be developed for the equations of continuity and

motion, Eqs. 3.2, 3.3, quite independently of the specific

form of the constitutive relation. A computer code could thus

be developed which contains the kinematical relations, the

logic necessary to determine gradients, and to control the

progress of the calculation through the space-time net, with-

out reference to a specific constitutive relation, leaving

provision to insert a specific constitutive relation as a

sub-program. One requirement is that the constitutive rela-

tion must provide a unique stress increment corresponding to

a specified strain increment at each step of the calculation,

and that these increments be of the same sign. Thermodynamic

and nonmechanical processes can be included in the sub-

program, as can provision of a material "memory' for the con-

trol of strain hardening and similar effects. This is a con-

siderable convenience. The latter processes are open to some

speculation, while the kinematical relations are, of course,

well established. The constitutive relation could thus be

altered very simply by replacing a sub-program, without af-

fecting the main program.
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4. CONSTITUTIVE RELATION

The form of the constitutive relation Eq. 3.4 is

not completely arbitrary. As is well known; certain integra-

bility conditions must be satisfied. Invariance of the con-

stitutive relation under rigid body motion demands that only

the symmetric part of the deformation gradient u (i,j) may

enter, since the antisymmetric part u[i.j] represents a

rigid body rotation, for which the reaction of the material

should not alter. Furthermore, invariance under coordinate

transformation requires that stress and deformation tensors

should enter only through their scalar invariants.

Except under very special circumstances, the state

of the material is not uniquely described by kinematic quanti-

ties alone. It is necessary to introduce thermodynamic

quantities and to consider the interaction between the kine-

matics and thermodynamics. While numerous studies have been

reported, the thermodynamic treatment of a solid is still in

a somewhat speculative stage.

To provide a basis for discussion, we present the

salient points of the thermodynamic argument. Following
12

Truesdell, the internal energy is introduced as a set

function to balance the total energy, entropy is introduced

as a dimensionally independent state variable which, to-

gether with the substate, suffices to determine the internal

energy, thus leading to the concept of a caloric equation of

state. Temperature and thermodynamic tensions are introduced

as derived variables, and equations for entropy production

follow. The material description is completed by supplying

phenomenological relations which govern dissipative processes.
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We do not pursue arguments of the existence of a

caloric equation of state, or of the applicability of the

equations for entropy production for nonequilibrium processes.

These are discussed at length in most thermodynamic texts.
1 3' 14

4. 1 Thermodynamic Relations

In addition to the fundamental principles of con-

servation of mass and momentum, which lead to the equations of

continuity and motion, we have the principle of conservation

of energy. We may write for a body

K+ E = W + D (4.1)

where K is the kinetic energy of the body, W the mechanical

power applied to its surface, and D the non-mechanical power

supplied to the body. The quantity E is an additive set

function, termed the internal energy, such that the total

energy (K + E) is balanced. Evaluating each of these terms

in integral form, the result, when simplified by the use of

the equation of motion, is for the element dx.

PF h +.u Pq (4.2)p= ij ui, j -hk, k + q4.

The increase in internal energy is thus due to the external

supply of non-mechanical energy QEl where

QE = Pq - hk1 k (4.3)

and the external stress work, P. given by

P = i ui, (4.4

Here 8 is the specific internal energy E = Sv Sdm, h denotes

the efflux of nonmechanical energy, and q is the supply of

nonmechanical energy (by arbitrary sources and sinks).
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It is sometimes convenient to decompose the stress

and deformation rate tensors into spherical and deviatoric

components. By virtue of Eq. 3.2 we obtain for PE

PE--p P/ + ' u'

ij (i,j) (4.4a)

where the prime denotes the deviator, and the spherical

stress 1/3 'tkk - p, where p is the pressure.

There are a number of parameters .which affect the

internal energy. Some of these are the deformation gradi-

ents u .  In general, let there be M parameters influencing

the internal energy, denoted by v . The set v is regarded

as given a priori, and defines the thermodynamic substate.

The basic assumption of thermodynamics is that the

substate plus a single other dimensionally independent scalar

parameter suffice to determine P, without reference to time,

place, motion, or stress, i.e. we postulate the existence of

a caloric equation of state

F = f(s, V., (4.5)

where s is the specific entropy.

The temperature T and thermodynamic tensions

are defined as

T --- (V constant)

(4.6)

T (s, v -. . .V+l VM constant)

In view of Eq. 4.5

T = T(s, a a = - (s, (4.7)
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If all functions so far introduced are regular and

reversible, then as consequences of Eq. 4.5, 4.7

s = s(T, v) 6 = (T, v) "a (T, ) (4.8)

These equations are known as thermal equations of

state, any one of which is insufficient to determine all the

state functions.

In our case, the definitions Eq. 4.6 imply

p = pTf, V + PTS (4.9)
cx

This equation, in parallel with Eq. 4.2 implies

that the increase in internal energy is due to the inner

stress power PI and the inner supply of non-mechanical

energy QI1 i.e.

P = PI + Q (4.10)

where

PI = P'-i Va (4.11)

and

Q= PTS (4.12)

From Eqs. 4.2, 4.12 we have an expression for the production

of entropy

PTs = PE - P1 + QE (4.13)

Thus the production of entropy is due not only to

the external heat energy flux, but also to the excess of ex-

ternal power over the internal power, i.e.,to the dissipative

work done. We express this latter quantity in the general

form
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PE- P1 = PT v (4.14)

Equation 4.13 may now be expressed in the form

PTs Py y - h, + Pq (4.15)

or rearranging

+ h k - P v (4.16)

The terms on the left represent the "reversible" rate of

entropy flow into the element, while the terms on the right

are usually considered to be the "irreversible" part of

the entropy production. This may be written

P T a -- Lh( I ) (4.17)

and is subject, by the second law of thermodynamics, to
the inequality

(4.18)

The results are indefinite until specific quantities

are inserted for the substatc .. We follow usual practice in

irreversible thermodynamics and generalize still further.

Noting that the "irreversible" entropy production may be re-

garded as the sum of products of generalized thermodynamic

forces Fa, (V, (1/T) I) and corresponding generalized thermo-

dynamic fluxes f,(Pyd/T, - hk), Eq. 4.17 takes the bilinear

form

Fa fa (4.19)

which by Eq. 4.18 is positive definite (or zero).
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It is necessary to express the relationships be-

tween the fluxes and forces. The assumption is usually

made 14z that the equations for entropy production are only

valid for states very near thermodyjamic equilibrium (r' = 0)

for which the relations between the forces and fluxes may be

regarded as linear, whatever their actual form, i.e. there

exist phenomenological relations of the form

F- = L' f (4.20)

The Onsager reciprocal relations, following from

the property of microscopic time reversal invariance, state

that the matrix of coefficients L is symmetric. Thus

- (4i.21)

i.e. ,the forces are "irrotational" in the flux space, which

is the necessary and sufficient condition for the existence

of a dissipation potential P such that

F =a 8 (4.22)

The potential has the form

1 = - f f = Fa f F (4.23)
2 a 2 2

The dissipation potential is therefore one half of the ir-

reversible entropy production.

While a general extension of Onsager's relations

to nonlinear phenomenological relations has not been forth-

coming, Ziegler 1 5 on the basis of certain orthogonality con-

ditions, postulates the existence of a potential Eq. 4.22

for general relations of the form
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F= F X(f) (4.24)

We now discuss two important constraints. Consider

first a process in which no dissipative work is being done,

i.e. PE = PI* A necessary and sufficient condition is, from

Eq. 4.13

PTs = Pq- hk( k  (4.25)

A sufficient condition is Pq - hk,k = u, i.e. adiabatic

conditions, which in the present case also implies s = 0, i.e.

isentropic conditions. Equation 4.2 reduces to

= i (4.26)

and the internal energy is thus a nondissipative strain en-

ergy potential. In view of Eqs. 4.8 it is thus possible to

eliminate thermodynamic quantities from explicit considera-

tion, and to characterize the material by a stress-strain

relation of the form

f (rij' u(i,j)) (4.27)

for a specific value of entropy.

W-,e introduce the free energy, defined by

-P P- sT (4.28)

From Eq. 4.9 we have

P P'r - PsT (4.29)

Thus
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s = - (v constant)

(4.30)

C = (T, v, val, V +v • VM constant).

and in view of Eq. 4.8

S= '(T, v) (4.31)

For nondissipative process, i.e., PE = PI5 and the

constraint T = 0, i.e., isothermal conditions

P- I ij uij (4.32)

and the free energy is a strain energy potential. In view

of Eq. 4.31 it is again possible to eliminate thermodynamic

quantities from explicit consideration and to characterize

the material by a stress-strain relation of the type Eq.

4.27, but for a specific value of temperature.

4.2 Special Cases

The equations in the previous subsection are quite

general, but also indefinite, until specific quantities v

are inserted. In this section we mention some of the speci-

alized theories of interest in the present context and their

connection to the general theory.

Consider a body deformed from some initial state

by suitable surface tractions. If the body is subsequently

unloaded and returned to its initial temperature, generally

only part of the deformation will disappear. Observation

of the body in the large does not give an indication of the

behavior of the material, however. It is necessary to

isolate a volumc element from the body by cuttLng, to
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remove the influence of residual. stresses imposed by the

surrounding material,if we wish to observe the material in

its natural state. 16 Observing such an element, we assume

that after the application of a stre.ss, if the element is re-

turned to its initial state of stress and temperature, then

only a part of the deformation will disappear. We term this

part the recoverable deformation. The remaining deformation

will be termed the irrecoverable deformation. The recover-

able part of the deformation will be limited by a yield

condition.

For a motion in which all deformations are re-

coverable, we assume that the substate v is defined by the

six deformation gradients u(i,j ) . We divide the total stress

into two components

. . + D (4.33)
j .] 1j

where T' is the nondissipative stress, so that

P .ti. (4.34)PI ] 1,j

and the remaining stress 7D is called the dissipative stress.

Then the equation for entropy production, Eq. 4.15 becomes

PTs Du. h + Pq (4.35)Si , 1,j - k,k

Solution of motions in general elastic media with

viscous dissipation and heat conduction then may proceed from

the equation of continuity Eq. 3.2, the equation of motion

Eq. 3.3, the energy equation Eq. 4.2, and the entropy equa-

tion, Eq. 4.35, together with a caloric equation of state

Eq. 4.5 (or two thermal equations of state Eqs. 4.8., 4.82)

and phenomenological relations connecting TD andij and t(i~j)

and h and (1,T) k subject to specific initial and
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boundary conditions. Body forces F. and heat sources q are

considered to be specified a priori.

We now consider motions which include irrecoverable

deformation. In addition to the total deformation gradients,

the substate I must include functions of the irrecoverable

part of the deformation. While this case is receiving con-
15, 17, 18, 19

siderable attention, a satisfactory general

treatment has not yet been given. We therefore consider

some special assumptions which allow simplification.

In the "hydrodynamic" theory, it is assumed that

the motion is adiabatic (QE = 0) and that the deviatoric

stress work is negligible compared to the spherical stress

work. With these assumptions, Eq. 4.2 using the decomposi-

tion Eq. 4.4a becomes

P = p P/P (4.36)

In most compacted materials, a purely spherical

deformation is almost all recoverable. Neglecting volume

viscosity,Eq. 4.15 reduces to the statement s = 0, and the

motion is isentropic. These are the equations for a per-

fect fluid.

At possible shock waves, dissipative mechanisms

come into play so that entropy changes may occur. These can

be handled by applying the Rankine-Hugoniot relations4 to

calculate the entropy jump at a shock. When the strength

of a shock wave varies as it propagates, the motion between

The term hydrodynamic is unfortunate since the theory de-
pends on the compressibility of the medium for its basic
assumption, while the term hydrodynamic has hitherto been
applied specifically to incompressible fluid flow. Since
the term is in fairly wide use in the present context, it
will be retained here.

32



shock waves is isentropic but not homoentropic (s i # 0):

Frequently an artificial viscous dissipation term

is added to Eq. 4.36 which is so formulated that it is

negligibly small except in regions of very high gradients,

i.e. at shock waves. This well-known mathematical device

renders the solution continuous and makes the equations

amenable to solution by finite difference numerical integra-

tion methods, while preserving correct isentropic flow away
8from shock waves. Equation 4.36 takes the form
Pi = p P/p + T!. u'

tj (i,j) (4.37)

Noting Eq. 4.8 and the fact that the only quantity

entering the substate v is P, so that T reduces to a

function of p, we have the thermal equation of state

e= F(p, P) (4.38)

We may proceed from Eqs. 3.2, 3.3, and 4.38 without

explicit reference to the entropy equation.

Temperatures may be estimated if, in addition, the

specific heat at constant pressure (p = 0) is known.1

It is clear that the hydrodynamic theory is only a

reasonable approximation at very high pressures when the yield

stress is negligible by comparison. A further condition is

that the deviatoric deformation rate be of the same order as

the spherical deformation rate so that the deviatoric stress

work is in fact negligible compared to the spherical stress

work.

We turn now to the problem of the mathematical

description of the transient response of a solid body to in-

tense impulsive loads.

Part of the motion will occur under very high pres-
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sure. Provided that the yield condition is not altered so that

the material is never able to support a very large deviatoric

stress, the hydrodynamic theory will provide a reasonable ap-

proximation to this phase of the motion.

Part of the transient motion will, however, occur

at relatively low pressure, where the hydrodynamic assumption

will be violated. If the low pressure part of the motion con-

tributes significantly to the overall response, then the hy-

drodynamic theory will be inadequate to describe the motion.

It will be necessary, under such conditions, to con-

sider a full thermodynamic treatment of the problem. Such a

treatment has so far not been given.

In the interim, it may be useful to attempt to in-

corporate material strength as an approximate correction to

the hydrodynamic theory, without explicit reference to the

entropy balance equation. While this might be done in a

number of different ways, one might make the following as-

sumptions:

a) The motion is adiabatic.

b) The yield stress is not increased by a very

large amount at any time in the motion. During any high

pressure phase of the motion, the treatment will then be

equivalent to that of the hydrodynamic theory, since the

yield stress will be negligible compared to the pressure.

c) The energy dissipation in irrecoverable

(plastic) deformation is negligible compared to the energy

stored in recoverable (elastic) deformation. The motion

will thus, in effect, be assumed to be isentropic. This is

justified (providing assumption b is valid) in the high pres-

sure phase of the motion, but may be seriously in error if

a large amount of irrecoverable deformation occurs during

the low pressure phase of the motion. Entropy changes may
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still occur on shock waves where they are handled by the

Rankine-Hugoniot relations, as in the hydrodynamic theory.

d) The material properties can hardly be as-

sumed to be temperature independent, However, we assume

that the temperature may be estimated from the spherical

deformation as in the hydrodynamic theory. This entails

two assumptions, viz.,that the energy stored in deviatoric

recoverable deformation is negligible,which follows from

assumption b above, and that the temperature increase due

to energy dissipation in irrecoverable deformation is negli-

gible, which follows from assumption c above.

Denoting by up- the recoverable part of the de-

formation, the energy equation, Eq. 4.2, thus becomes

PF, U .G (4.39)

while the entropy equation again reduces to = 0 between

shocks. Equation 4.39 express'es the fact that there is an

elastic strain energy potential P8 = T such that

T.. - . (4.40)

and the constitutive relation reduces to a stress-strain re-

lation involving the recoverable part of the deformation.

Also needed is a yield condition to determine, in effect, the

proportion of the deformation which is recoverable.

The elastic stress-strain relation is applicable

to a specific value of entropy. Provision must be made for

entropy production at shock waves with a corresponding change

in the strain energy potential.
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5. ELASTIC BEHAVIOR

5.1 Finite-Strain Theory

In this section we investigate the possibility of

describing the recoverable part of the deformation in terms

of finite-strain elasticity theory.2 0  Following usual prac-

tice, we employ the Eulerian strain tensor

Ckj = (Uk,j + Ujk - ui U ) (5.1

Between shocks, the motion is isentropic (6 = 0)

and there exists a strain-energy potential T - Pg. By Eqs.

4.5 and 5.1, the strain-energy potential is a function of

strain only, at constant entropy T = T(E). This function is

represented, for an isotropic homogeneous medium, by a power

series expansion in the strain invariants.

2 3
= aIj + bIl + c1 2 + lIl + m11 12 + n1 3 + (5.2)

where

,= E. 12 = E i - ii € )

= 1 1] 1 j

13 = (2Ei jj E1 cj - 3E + E Ej Ek
13 ( i Cj i - 3ij 'j i 'kk +  ii j kk )

To conform with the requirement that the

stress vanish in the unstrained state and that the theory

agrees with the classical theory for infinitesimal strain,

we set a = 0, b = (? + 2 i)/2 , c - 2L where he - are the

adiabatic Lame constants.

With the definition Eq. 5.1, the stress-strain law

may be obtained from the strain energy potential by
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ij = (bik - 2Eik ) (5. 3)
S

Including only terms shown in Eq. 5.2, the stress-

strain law thus takes the form

rs rs + 2 Ers -- 4 Eri is

2

- (2? + m)lj Ers + (32 + m) 1  s + M1 2 5rsrs rs

2

+ nr 13 - 2(31 + m)lI Ers + 2m Er 1
rs rs is

- 2mI2 E rs - 2n5 I 3J (5,.4)

where

ri is rs

and the density ratio is given by

P/Po = (1 - 211 + Z112 - 813) /(5.5)

If the material constants X, i, Y, m, n can be

found, Eq. 5.4 and Eq. 5.5 provide a complete description

of the elastic behavior at constant entropy to within the

approximation implied by Eq. 5.2.

If the value of entropy is changed, the numerical

values of the coefficients will be altered.

Note that a parallel development holds for iso-

thermal conditions (T = 0) when, from Eq. 4.32, there exists

a strain energy potential T = PVI ((). This strain energy po-

tential may be expanded in the same way as in Eq. 5.2, lead-

ing to an identical stress-strain relation Eqs. 5.4, 5.5
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except that the constants -A, ., 1, m, n now apply to iso-

thermal conditions. Their numerical values will be differ-

ent from those of the isentropic theory and will be al-

tered if the value of temperature is altered.

To complete the description of the material, the

coefficients ?\, 4, 1, m, n must be evaluated. Before pro-

ceeding we write down some further results which will be

useful.

For a purely spherical strain E../3 =._, the re-

lation between spherical strain and spherical stress or pres-

sure ii/3= - p can easily be found from Eq. 5.4

- p = c(l - 2-) (3? + 24) + -(27 4- 9m + n) (5.6)

while the density ratio Eq. 5.5 becomes

P/Po = (1 - 2e)3 / 2  (5.7)

Combining Eq. 5.6 and 5.7 gives

i ) - ~{(3?\ + 24) + (271 + 9m + n)

12/ 3

- -7(271 + 9m + n) o PO (5.8)

It is desirable to derive the elastic moduli for

a material subjected to a spherical strain. We follow the
21method of Birch.

If a small perturbation is produced in a state of

uniform spherical strain, then we may write

Ers rs + --rs (5.9)
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where ers' the perturbation strain, is assumed to be in-
finitesimal. The strain invariants of E rs may then be

written

I, = 3 P + I,

2
12 = 3_6 + 2-,I + I'

3 2
13 = 0 + - Il + -l1' +1I'

where the invariants I, 1, I refer to e rs. Neglecting

the second and third invariants of e rs and inserting in Eq.

5.5 we find, approximately

P/Po = (1 - 2e)3 {1 - 1 V 2- (5.10)

Decomposing the stress in a similar way to the

strain we write

Trs p rs +Ors (5.11)

where the perturbation stress ars corresponds to the strain

ers' and we find a relation between ars and e rs analogous

to Eq. 5.4

=r (1 i-¢ 3 /
G = - 2 )3/ - (5 \ + 2L - 181 - 7m - n)

--s (631 + 23m + 3n) b rsI

+ (1 - 2e)3 / 2 
f4t - (6?\ + Si + 3m + n)

e ¢2 (5Z + 12m) f rs (5.12)

Denoting the total displacement of a point P
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as u = u- + u', where Uo is due to the spherical strain, and

U' is due to the perturbation, we find

uij = 5iji - (1 - 2e4) /2 + (1 - 2e) u 

Inserting this in Eq. 5.1 and neglecting powers of u' higher

than the first, we obtain

ij= u(ij) (I - 2e4) (5.13)

To obtain the shear modulus, we set all a2 2

Cf33 C 2 3 = a3 1 = 0 and u' u3' = 0. Then

G =
Ul
1,2

From Eqs. 5.12, 5.13 this becomes

G= -( - Ze) {2 - c(63\ + 8 i + 3m + n)

(5.14)

Se
2 (541 + l2m)

To obtain the bulk modulus we set a1 2 = a2 3 =

( 3 1 =0 and a11 = a2 2 = a3 3 , uf =u2u' = u3. Then

K =
ul

1,1

which from Eqs. 5.12, 5.13 becomes

K = (l - 2)e {(3? + 24) - e(21?\ + 144 - 5412 -1 8m - 2n)

(5.15)

- 2(2 4 32 + 81m + 9n)
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To obtain the uniaxial strain modulus, we set

U22 
= 033 and u 2 = u3 = 0. Then

F - 7

U1

which from Eqs. 5.12, 5.13 bec'omes

5 /2F = (1 - 2c) + 2p,) - c_(ll?\ + l0li - 181 - 4m)

(5-.16)

- c2 (1172 + 35m + 3n)}1

We may note that F =K + 4G/3, i.e. the moduli

bear the same relationship to one another as in the in-

finiitesimal classical theory.

The corresponding infinitesimal shear, bulk and

longitudinal wave velocities are~r7 , /R7 and / P

A more elegant derivation has recently been given

by Toupin and Bernstein 22and Hayes and Rivlin 2 3 from the

consideration of jump conditions at a finite amplitude wave.

5.2 Evaluation of Elastic Constants

Most of the recent experimental determinations of

adiabatic elastic moduli have been made using the ultrasonic

pule-ehotechnique. 2,5Measurements have been made for

a large variety of materials, both polycrystalline and in

single crystal form,at ambient temperature and at zero pres-

sure.

A number of studies have included a measurement

of the dependence of the elastic moduli on temperature. It

has been shown that, for many materials, the elastic moduli

show similar behavior. (See sketch)
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Above the Debye tempera-

ture 0 the elastic moduli

generally show an almost

linear decrease with tempera-

0 ture to a finite value at the0

U melting temperature TM. Be-

low the Debye temperature,

the slope of the curve de-

I creases, approaching zero at

zero temperature.

TM Measurements of elas-
Temperature

tic moduli at ambient pres-

sure (1 atm) lead to values of the first order elastic con-

stants. In the case of an isotropic medium, these are the

Lam6 constants.

Several studies have been performed under hydro-

static pressure and the dependence of the elastic moduli on

pressure has been reported. 26,27,28,29 Due to limitations

in the technique, pressures have been limited to about 10 kb.

Nevertheless, the data are sufficient to determine the pres-

sure derivatives of the elastic moduli. Most of these de-

terminations have been for single crystal specimens.

In an isotropic medium, only two moduli can be

determined; the longitudinal modulus F corresponding to the

longitudinal wave speed, and the shear modulus G corres-

ponding to the transverse wave speed. The measured pressure

derivatives would then give two relations for the second

order elastic constants 2, m, and n through Eqs. 5.14 and

5.15. These relations are insufficient to detemnine 2, m,

and n separately.

Hughes and Kelley 30 in addition measured wave ve-

locities under conditions of uniaxial stress and thus obtained
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sufficient information to determine i, m, and n separately,

in a manner somewhat analogous to that subsequently sug-
22

gested by Toupin and Bernstein. However, the serious dis-

advantage of this method is that the. static uniaxial stress

cannot be carried to high values without causing permanent

deformation in most materials. The values of the second-

order constants determined by Hughes and Kelley for poly-

styrene, Armco iron, and pyrex are correspondingly very un-

certain.

Information relevant to the second-order elastic

constants may also be deduced from adiabatic compressibility

data under spherical stress, through Eq. 5.8, or equivalently

through Eq. 5.15, noting that K = P(3P/6P)s. Hydrostatic

compression experiments have been carried out to pressures

of 100 kb, but refer to isothermal conditions. Under the

assumption that the yield stress remains small, so that the

deviatoric stress may be neglected in comparison with the

spherical stress at high pressure, the shock wave and material

particle velocity measurements of McQueen and Marsh 3 1 and of

Altshuler et a132 in plate impact experiments may be reduced

to pressure-density information through use of the Rankine-

Hugoniot relations. Such experiments have been carried out

to pressures of about 4 Mb, but refer to the shock Hugoniot.

Adiabatic compressibility data may be approximately inferred

from both the isothermal data and hugoniot data by use of

the Mie-Gruneisen equation. Compressibility data on the

zero temperature isotherm may be similarly inferred.

If the neglect of terms of order greater than E
3

(Eq. 5.2) is justified, then we see from Eq. 5.8 that a plot

of
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p

(/)2/3 

P

vs. (p/po) should be a straight line. Moreover the values

of (?, + 24/3) and (271 + 9m + n) may be found from the slope

of the line and its intercept with the ordinate.

We have, so far, made only a preliminary comparison

for copper. Data for the zero temperature isotherm up to

2.7 Mb are available, and are shown plotted in figure 5.1. The
32

high pressure points are those of Altshuler, while the low

pressure points were taken from a recent reintegration of the

data of McQueen and Marsh.6  It is very encouraging that the

data can be fitted adequately by a straight line, suggesting

that additional terms are not required in the expansion,

Eq. 5.2. The straight line fit yields (?, + 24/3) = 1440 kb,

and (271 + 9m + n) = - 5880 kb.

Data for adiabatic conditions are available only

up to 500 kb; (Walsh et al ). Two adiabats are plotted in

figure 5.2, one passing through ambient conditions (P = 0,

T = 293 0K) and one passing through a point at 500 kb on the

hugoniot, and thus referring to a different value of (con-

stant) entropy. The straight line fits yield (?, + 24/3) =

1403 kb, (271 + 9m + n) = - 5840 kb and (\ + 24/3) = 1387 kb

(271 + 9m + n) = - 4460 kb, respectively. The value of

(?\ + 2./3) = 1403 kb on the adiabat through ambient conditions

may be compared to a value of (C1i + 2C1 2 )/3 = 1370 kb

measured by Daniels and Smith 2 7 by the pulse-echo technique,

and a value of K = 1414 kb found from static compressibilitys33
data corrected to adiabatic conditions.

Note that, so far, the comparisons in figures 5.1

and 5.2 constitute only a new empirical fit to the compressi-

45



bility data, the only interesting fact to emerge is that it is

apparently sufficient to include terms only up to those shown

in Eq. 5.2 to fit the data up to 4 Mb. To demonstrate the

existence of a strain energy potential, and the applicability

of the foregoing theory, it would be necessary to measure

the velocities of all nine possible kinds of waves in a medi-

um subjected to an arbitrary homogeneous deformation, and

verify that they satisfy the relevant compatibility condi-

tions 3 4. If the yield stress is negligibly small at high

pressure, however, only two distinct wave velocities are ob-

servable.

Altshuler et al. 3 5 have reported an experiment in

which both these wave velocities have been measured. The
"overtaking-relaxation method" yielded the speed of the bulk

wave, which corresponded to f-TP, determined from the adia-

batic compressibility data. The "lateral relaxation method"

led to velocities which were higher than the bulk wave ve-

locity and corresponded to the longitudinal wave velocity.

Only one measurement is available for copper. The measured

velocity of a longitudinal release wave propagating into

material shock loaded to 407 kb was found to be 6.33 Km/sec,

yielding K + 4G/3 = F = 4290 kb. We have values of (?\ + 2R/3)

and (271 + 9m + n) for isentropes through 500 kb and 0 kb on

the hugoniot only, but by rough interpolation the isentropic

bulk modulus at 407 kb is found to be K = 3160 kb. Thus

G = 850 kb approximately, which may be compared to the value

of i = 478 kb at zero pressure. Although both the measurement

and the comparison are very rough, there seems to be a sub-

stantial increase in shear modulus with pressure. Careful

measurement of the velocities of longitudinal release waves

propagating into material shock compressed to a variety of

pressures should provide sufficient information to determine
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if Eq. 5.14 is adequate and to provide an independent determi-

nation of another combination of the second-order elastic con-

stants.
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Figure 5.1. Compressibility data for the zero temperature
isotherm for copper to 2.7 Mb.
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6. YIELD BEHAVIOR

6.1 The Mechanics of Yield Behavior

In this section we investigate certain aspects of

the yield condition relevant to the problem at hand.

To avoid unnecessary complication due to finite strain

effects, the initial development is restricted to infini-

tesimal strain, and comparisons will be made with experiments

in which the compression is very small. The development is

also limited to isotropic, homogeneous media.

We recall the stress decomposition

=- b.. + T!. (6.1)

The spherical stress T = /3Tii= - p is here

taken to be nondissipative. The stress deviator is fur-

ther divided into two components.

T!. = a!. + . (6.2)ij 3.] ij

where T* is a (viscous) overstress, which depends on the

strain rate and is zero when the strain rate is zero.

The strain is divided into two parts, a recoverable

elastic strain C& and an irrecoverable plastic strain EP, i.e.

E.. = E . + EP (6.3)1.3 1] ij

In conformity with the stress decomposition, we

assume that the spherical strain is entirely elastic and

that the plastic strain involves no volume change and is thus

independent of pressure.
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It is consistent with the concept of an equilibri-

um yield stress and a transient overstress to describe the

stress-strain behavior in the manner suggested by Malvern.
6

We can generalize the uniaxial description to a triaxial

description as follows:

The total strain rate is the sum of an elastic

and a plastic component,

i.- E + ij (6.4)

The elastic component is related to the stress rate by

Hooke's Law,

j +2G Iii + K i (6.5)

The plastic component is given by a strain-rate function,

. -g ( 6 .6 )

is the von Mises effective stress: in terms of the three

principal stresses this is given by

: (Qrz - )2 + (T2 - 2 + (T - (6.7)

G and K are the elastic shear modulus and bulk modulus, which

will be considered functions of the state of the material.

The strain-rate function, g, is also a function of the state

of the material but primarily dependent on the overstress.

It will be observed that Eq. 6.6 parallels the

Reuss equations for quasi-static plastic flow.3 7  Besides

the proportionality of strain rate and deviatoric stress

we have tacitly assumed therefore that the principal axes
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of strain rate (or of strain increment in time dt) coincide

with the principal axes of stress and that the rate of volume

change in plastic flow is zero. Furthermore we notice that

on squaring both sides of Eq. 6.6 and summing we obtain

g = EP (6.8)

where TP is formed from E?. as T is formed from T.. in
ij 3j

Eq. 6.7.

We will immediately specialize Eq. 6.6 further by

taking g to be a function of the "von Mises effective over-

stress," that is to say we write

g = g(T,) (6.9)

where T -- a, and a satisfies the yield condition.

Clearly it will be a convenience in this formulation to use

the von Mises yield condition; we will do so, and write the

equilibrium yield condition

0= Y (6.1o)

The customary geometrical interpretation can be

given to these equations. We plot the values of the princi-

pal stresses along Cartesian coordinate axes. Equation

6.10, the equilibrium yield condition, is represented by a

right circular cylinder of radiusf2/ Y whose axis is the

line ol = 02 = 73. The stress T is represented by a point

on a coaxial cylinder of radius,/-2/3 T. The normal distance

from this point on to the equilibrium yield surface is the

difference between the radii, 1- T*.

An increment of stress A-r is represented in this

space by a vector which can be resolved into two components

parallel to and normal to the cylinder axis. These are the

dilatational and deviatoric components of the stress incre-
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ment. Equation 6.5 shows that the accompanying elastic strain

increment has dilatational and deviatoric components related

to the corresponding stress components by the proportionality

factors 1/3K and 1/2G, respectively.. Thus we may represent

the elastic strain increment and its components by the stress

increment vector (AC, say) and its components (AB, BC, say),

bearing in mind the different proportionality factors for the

two components.

The vector AC may also be taken to indicate the

change in the plastic strain rate. The plastic strain rate

before the stress increment is zero if A lies within the

equilibrium yield surface. If A lies outside it, Eqs. 6.6

and 6.9 show that the plastic strain rate is directed along

a vector MA, where M is the foot of the normal from A on to

the equilibrium yield surface, and its intensity is a func-

tion of the length MA. Likewise the plastic strain rate

after the stress increment is either zero or is represented

by the outward normal NC from the equilibrium yield surface.

It may be observed that NC need not contain B since BC may

have a component parallel to the yield surface, corresponding

to a change in the direction of the plastic strain rate but

not of intensity. Its component normal to the yield surface

corresponds to a change of intensity of plastic strain rate

but not of direction. The vector AB corresponds to a change

in hydrostatic pressure and is associated with no change in

plastic strain rate.

In this analysis of strain-rate dependent yield

behavior we will express the constitutive equation in terms

of strain rates and stress rates. We will assume that the

values of the elastic moduli G and K, the equilibrium value

of Y and the function g(*) can all be described in terms of

the state of the material. We postpone for the moment a
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discussion of the way in which Y and g(T ) vary with the

state of the material.

Usually we can presume G, K and g to be functions

of the strain and the temperature; Y is dependent on the

complete history of the material.

Because the conservation equations are written in

terms of the total strain, the constitutive equations'should

also be so written and not left in terms of elastic and

plastic strain components. Manipulation of Eqs. 6.4, 6.5,

6.6, and 6.9 gives

i ~ 2Gi .+ (K - G) -2G (* -1 (6.11)

ij iJ 3 ij kk - ) g( '

The equation includes elastic behavior if we write g(T") = 0

when T < 0.

It may be remarked that the neglect in Eq. 6.11

(or in Eqs. 6.4, 6.5, and 6.6) of time derivatives higher

than the first implies that we are not concerned with changes

in behavior over a time interval as small as that required to

accelerate the dislocations, whose movement causes plastic

strain, to their terminal velocities. This time is probably

of the order of 10-11 seconds. In view of the time resolu-

tion both of our experimental observations and our computa-

tions, the neglect of second and higher order time derivatives

is acceptable.
3 8

We will now specialize the description of the strain-

rate dependent behavior in three dimensions to the cases of

uniaxial stress and uniaxial strain.

For all axially symmetrical situations the princi-

pal components of stress and strain may be written ( , X t1  t),

(x $t' t), respectively, where the subscript x denotes the
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axial direction and the subscript t a transverse direction.

It follows that

= fx - tI (6.12)

Equation 6.11 becomes in the axial direction,

4G 4G ~ 4G (613
x (K + T). x + (2K-) - g(T) (6.13)

and in the transverse direction,

2G (K-- ) x + (2K-2G) + 3g(T*) (6.14)

To obtain the equation for uniaxial stress, we put =

and eliminate Et between Eqs. 6.13 and 6.14. Recalling that

Young's modulus, E = 9KG/(3K + G),we obtain

x = Ex - - g (7* ) (6.15)

If Y(E x ) is the yield stress in simple tension for an equiva.-

lent work-hardened state,

= - Y(E) (6.16)

Equations 6.15 and 6.16 describe the strain-rate dependent-*

behavior in uniaxial stress for a given function g(r ). It

will be observed from Eq. 6.15 that the function g, defined36
by Eq. 6.6, differs from the function used by Malvern by

the factor 2E/3.

The equation in the axial direction for uniaxial

strain is obtained immediately from Eq. 6.13 by putting

S=0.t

4G 4G -
= 3 x - g( (6.17)
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In order to use this equation and retain a one-dimensional

description we must express T in terms of Tx and E . Thisx x

can be done as follows.

In uniaxial strain

Et -
t +

* = 0 (6.18)
t t t

and since the plastic strain has no spherical component

EP + 20P = 0 (6.19)
x t

Therefore

= E- + 2E (6.20)
x x t

If we now write EPx and Ct in terms of T and T using Eq. 6.5x t t
we obtain

= -L (t + 2t) (6.21)

x 3K x. t

This equation may be integrated and rearranged to give

t3K .1I

Tt t -K E dt -- Tx (6.22)

Recalling Eq. 6.12 we can now write down the value of 'r

namely

T = - x -J KEx dt - (6.23)

and we have achieved our objective.

It may be convenient to express the overstress

in terms of the current state of the material, and this

can be done at the expense of introducing an assumption

about the nonlinear elastic behavior. We follow Wood3 9 and

Rice et al. 1  and take the value of the integral in Eq. 6.23
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at any time to be the value of the pressure p(Ex ) on the hy-

drodynamic hugoniot curve for the same volumetric strain.

The value of T can then be written

= T I { p (E)j (6.24)

and if Y(E x) is the yield stress in simple tension for an

equivalent work-hardened state,

7 _x3

T = [ Tx- p(x)j - Y(E. (6.25)

Equations 6.17 and 6.23 or 6.17 and 6.25 describe

the strain-rate dependent behavior in uniaxial stress for a

given function g(T,").

We will now examine in turn the overstress T

and the yield stress 0.

6.2 The Rate-Dependent Overstress

For many engineering purposes the behavior of

metals has been described as rate independent, that is to

say, T is taken to be zero. This description is also useful

in wave propagation analyses since many features of the be-
,

havior are not seriously affected if is neglected. Thus,

for example, Bell and his co-workers have been able to show

that the von Karman rate-independent theory of wave propaga-

tion, when used with the appropriate equilibrium stress-

strain relationship, will adequately describe their observa-

tions of the symmetrical impact of rods of annealed aluminum
41 ea42

copper and lead In uniaxial strain, too, the rate-

independent theory has been found to describe many features6
of the behavior. However, the rate-independent theory can-

not be reconciled with the well-established model for the

yield process of dislocation propagation and repositioning
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of the atoms in the lattice sites. Plastic flow is not in-

stantaneous. Furthermore, although there is good evidence

that a rate effect may be neglected in some situations,

there is also good evidence that a rate effect can signifi-

cantly influence measurable quantities. The evidence for

the rate effect in metals has been summarized recently by

Johnson, Stein and Davis
4 3 and by Perzyna.

4 4

It is therefore desirable to include a rate-

dependent overstress in the constitutive relation. However,

it is difficult to decide on the functional form of the rate

function g (Eq. 6.6). The rate-independent theory may be

used to describe most of the wave propagation experiments

which have been performed; experimental evidence for the

form of g is correspondingly slight. The best that can be

done at present is to choose a simple functional form for g

which is consistent with current theories of the physical

processes taking place and then to use experimental results

to put bounds on the values of the coefficients. This has

already been attempted. Perzyna4 4'4 5 uses a formulation of

visco-plastic behavior essentially the same as that described

above and computes results for a particular experiment of

Campbell and Duby using different rate functions. The com-

parison is inconclusive. At the Los Alamos Scientific

Laboratory, rear surface behavior in plate-impact experiments

has been calculated, again with a formulation essentially the

same as that described aboVe. Only a preliminary account of

the work is available at present.6 The results support the

hypothesis of a rate effect but do not enable a quantitative

estimate of the function g to be made with any confidence.

We now develop a simple form for the function g.
46

The discussion closely parallels that of McQueen and Marsh,

but is written in terms of the formulation of mechanical
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behavior described above.

Consider an element of material for which the total

strain is held constant. Putting E = 0 in Eq. 6.11 we ob-

tain for such a condition

2G g(+) . + = 0 (6.26)

Further, E kk = 0 and therefore T = 0 by Eq. 6.5 so that we

can write

2G g( *) _ I . = 0 (6.27)T 1

Forming the von Mises effective stress, we get

2G g(Y') + T = 0 (6.28)

since T will be negative.

Now we make the assumption that o = 0 so that

= T .Certainly if the rate effect is significant the

strain hardening will be small compared with the stress re-

laxation for a given amount of plastic flow. Equation 6.28

can then be rewritten as

d--t- -* dt _ -
-- • -- =(6.29)

dT* 2G g(T*)

which gives the time required to relax the overstress at

the current rate. This "relaxation time" we will write as

h(r*).

To the extent that plastic flow is due to the propa-

gation of dislocations, it is a thermally activated process and

follows Boltzmann's Law. With this tenuous justification we

assume that h may be expressed
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kT H exp U (6.30)

where H is a constant with dimensions of time, U is an activa-

tion energy, c is constant with dimensions of volume, k is

Boltzmann's constant and T is the absolute temperature.

We then have

g(7*) = a T eb T (6.31)

where a = l/(2GHeU/kT) with dimensions (stress time) -

and b = c/kT with dimensions (stress) -'. This is the form

for g used in Sect. 6.4. The constants a and b cannot be

determined from basic physical constants; their values must

be found empirically. The formula may be expected to tit

experimental data only when the conditions are such that the

plastic flow is predominantly thermally activated.

It may be inferred from the work of Dorn and his

collaborators 38 ,4 7 that at low temperatures (less than

about 200 0K for aluminum) or at high strain rates (above

105 sec for aluminum) g will assume some other form,

more nearly linearly related to stress and temperature. This

hypothesis is supported by the observation that plastic de-

formation by twinning is observed both at low temperatures

and at high strain rates, which shows that the flow mechanisms

are indeed different from those operative under less extreme

conditions.

It is interesting to calculate approximately the

effect of temperature changes on the function g in the form

given by Eq. 6.31. In an ordinary tensile test at room tem-

perature when plastic flow is easily observable,the value of
£P is of the order of 1O - sec and the value of (U - cT*)

must be about 1 eV. The strain rates we are interested in
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are more like 104 sec "
. For this change of rate at the same

temperature,(U - cT") must be reduced to about 0.6 eV. Let

us say then that the energy to be supplied by thermal fluctu-

ations is 0.6 eV. If this is the case, the strain rate doubles

for a 9 0C rise in temperature from 293 0K to 302 OK, the

overstress being held constant. Alternatively the strain rate

can be maintained while the temperature increases 9 0C if the

value of cT is reduced from about 0.40 to about 0.38. The

results of Hauser, Simmons and Dorn 4 7 indicate that for

aluminumc has a value of the order of 1 eV/kb. The stress

change required to maintain the strain rate is therefore of

the order of 0.02 kb.

We cannot carry this analysis of the temperature

dependence of g very far, since the functional fomnof g is

only a conjecture. However, it serves to show how strongly

g is dependent upon temperature when the process is thermally

activated. It suggests, too, that the strain-rate dependent

overstress may be negligible in uniaxial-strain wave propaga-

tion when the plastic flow is thermally activated, because of

the temperature rise through the loading shock wave. For

aluminum,a modest pressure rise of, say, 100 kb is associated

with a temperature rise of about 74 C.l

On the other hand, stress activated processes,

which are not strongly temperature dependent, are important

if, as seems likely, they control the behavior at the higher

strain rates.

6.3 The Yield Condition

We now examine the problem of determining the yield

stress in terms of known measures of the state of the material.

The yield condition can be defined in different ways.

The static yield condition gives the combination of stresses
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at which plastic flow is first observable if the material is

slowly loaded from an elastic condition. The dynamic yield

condition for a material which does not show a strain-rate

effect gives the combination of stresses required for plastic

flow to take place in plastic wave propagation. These two

yield conditions may differ. For annealed copper for example,

Bell and Werner have shown the static and dynamic stress-strain

curves in uniaxial stress to be significantly different. I

Here the dynamic curve is the relationship-between stress and

strain which when used with the von Karman theory of plastic

wave propagation gives results which agree with experiment.

One would expect the static and dynamic yield con-

ditions to be the same. Both can be defined in terms of Eq.

6.2 as the stress a associated with an infinitesimal plastic

strain rate. That they are not coincident, as determined

from static and dynamic experiments, might well be due to

time-dependent processes taking place in the material at yield

stress levels. In the time taken to conduct a static tensile

test there may be, for example, ageing and self-annealing

mechanisms active which in the time of the dynamic experiment

are effectively inoperative. Therefore, if the yield condition

is required for use in wave propagation analysis, it should be

determined from wave-propagation experiments. It is then the

yield condition appropriate for the mechanisms which are opera-

tive in the case being analyzed.

Such a dynamic determination of the yield condition

is not easily made. It may be inferred from the previous dis-

cussion that the Hugoniot yield point is not determinable from

the records of measurable quantities unless the rate function

g is known. The determination of the yield condition for a

particular material calls, therefore, for a carefully designed

program of experimentation and analysis.
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Very few experiments of this kind have been done.

Probably the only series of experiments from which a yield

condition can be deduced with confidence is the work of

Bell4 0 ,4 1 which is confined, however, to uniaxial stress con-

ditions and to pure, dead-annealed material. The work of
38Dorn and his collaborators i.s also thoroughly done and

covers hardened materials but is once again confined to sup-

posedly uniaxial stress conditions. Dorn's results are de-

duced from Hopkinson bar measurements of the behavior of the

ends of the specimens; the analysis assumes that the stress

is in fact uniaxial and that the material behavior can be in-

ferred from average values of the variables over short time in-

tervals. Until a proper axially symmetric two-dimensional

analysis of inelastic wave propagation in rods is available it

will not be possible to decide to what extent the assumptions

made in the analysis invalidate the results. Other work,

similar to that of Dorn et al., has been done by Ripperger
48

and others at the University of Texas. They have attempted

to account for both the strain-rate effect and the radial

stresses in their analysis but the results are not conclusive.

Although experiments on wires or rods are in many

ways attractive, they suffer from the serious disadvantage that

the stress is not in fact uniaxial. Without careful analysis

of the complete two-dimensional wave system, which the experi-

ment was originally designed to avoid, it is not possible to

isolate the effects of various secondary features of the be-

havior, such as strain-rate effects, nonplanar wave fronts

and radial motion. This criticism does not apply to plate ex-

periments where the wave propagation is in uniaxial strain.

However, they are not easily carried out and very little use

has been made of plate impact or other longitudinal plane

wave experiments to investigate yield behavior. Both Fowles,

who sacrificed the simplicity of a purely uniaxial geometry in
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order to observe the behavior on a wedge surface, and Lundergan50

have determined the Hugoniot elastic limit for a particular

aluminum alloy at room temperature. No other conclusive de-

termination of the dynamic yield condition for a metal in uni-

axial strain has been published.

Information on the yield condition from the theo-

retical point of view is also sparse. There is no lack of

theories to describe details of the behavior but it is not pos-

sible at present to put together a quantitative description of

the yield condition. If the yield condition is to be in the

form of a "mechanical equation of state," a - f(j,T), where T

is the temperature, then it must follow that the structure of
the material is preserved in the plastic flow. This is known

not to be so. The structure of the material is changed by de-

formation and the functional dependence of the yield stress on

strain and temperature changes with it. If the structure of

the material could be described by a number of parameters

S1, S 2 • - - Sh then it should be possible in theory to write

a= f(S1 , $2 • Sn, T) as the yield condition. Two par-

ameters of this kind which have been used are the total strain

! and the total plastic work,but the reason for their choice

appears to be mathematical convenience rather than physical

realism. It can be shown experimentally that the yield condi-

tion depends upon at least two independent structural par-
51

ameters. In fact one might expect more, for there can be

several mechanisms contributing to the hardening, and each be-

haves in its own way with changing temperature and changing

plastic strain, depending on the annealing, diffusion and other

processes taking place.

The yield condition, and its dependence on the state

of the material therefore is not known and it is not possible

to formulate a hypothetical yield condition in such a way that
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the complex dependence on all of the previously-mentioned

factors is included in a physically realistic way.

The problem remains of what value to give to a in

a wave propagation analysis. It is evidently necessary to

make some arbitrary assumptions, and the most convenient as-

sumption is that, for a von Mises yield condiAion, a is a

material constant. Although the functional dependence of 7

on the state variables is not known, this elastic-plastic

assumption can be improved. For example, the strain hardening

may be included by taking the value of 7 from a tensile test

at a strain which represents an equivalent amount of total

plastic work.4 9 Again, it is an improvement over ignoring

the temperature effect to assume that the value of 7 de-

creases to zero at the melting point.

Whether or not such arbitrary phenomenological

descriptions of the behavior are adequate for engineering pur-

poses depends not so much on their physical exactness as on

the effect of their inexactness on the quantities of interest

in a particular configuration. If modifications to the yield

behavior have only a very small effect on quantities of in-

terest for a certain class of engineering problems, then for

the analysis of this class of problems the yield behavior may

be prescribed only approximately. In the next section we in-

vestigate the effect of some simple descriptions of yield be-

havior for a particular example of wave propagation in uni-

axial strain.

6.4 Calculations of Wave Propagation in Uniaxial Strain

The discussions of the two preceding sections can

be put into perspective by considering some special cases,

and calculating the effect on observable quantities of changes

in the yield behavior. We have chosen to calculate the be-
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havior of an impacted aluminum plate at two different impact

velocities, for various modifications of the simple elastic-

plastic behavior.

There are of course a great many configurations and

different materials for which the observable behavior might

usefully be calculated. A complete appreciation of the rela-

tive importance of the modifications to the yield behavior

will not be obtained from calculations of only one configura-

tion. The work of this section should therefore be regarded

as only a beginning to a proper investigation.

Calculitions are made for the configuration shown

diagramatically in figure 6.1 for two different velocities of

the projectile, called Cases A (velocity v) and B (velocity

3v). The calculations have been made using Wave II, a one-

dimensional code for wave propagation in a solid with an ar-

bitrary constitutive equation, which is described in a re-
52

port by Herrmann and Mack. Its accuracy, especially for

the strain-rate case, is demonstrated in the report. Four

different types of yield behavior are considered. Elastic-

plastic with a constant yield point, that is to say perfectly

plastic; (Cases Al, BI) elastic-plastic with a pressure-

dependent yield point (Cases A2, B2); elastic-plastic with

strain hardening (Cases A3, B3); elastic-plastic with a

strain-rate effect (Cases A4.1, A4.2, B4.1, B4.2).

The constitutive equations chosen for calculation

are nominally for aluminum. The basic elastic-plastic be-

havior is taken to follow the Wood theory with the Murnaghan

expression for the hydrodynamic Hugoniot, the constants being

taken from static datawhichhave been shown to give good re-

sults for initial loading in the case of 6061-T6 alloy. The

modifications to this elastic-plastic behavior are arbitrary,

however, and are not intended to represent the behavior of any
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particular real material. The actual constitutive relations

chosen for the different cases are now described.

Case 1. The elastic-plastic behavior is intended

as an approximation to the behavior of 6061-T6 aluminum, and

is taken as follows:

Elastic d/dV = - 1067.4 kb

Plastic loading T = p + 1.84 kb

Plastic unloading T = p - 1.84 kb

where p - 169.38 (V
" 4 3 4 

- 1) kb

T is the axial stress

v is the ratio Po/P

P is the density and Po its initial value

p is the hydrodynamic hugoniot pressure for

the density P.

Case 2. Under ordinary engineering conditions it is

well established that the effect of hydrostatic pressure on

the yield behavior is very small indeed. It is usually pre-

sumed that the same is true for dynamic behavior in uniaxial

strain. This may be so, but it is nevertheless of interest

to see what would be the effect on observable quantities of

a pressure-dependence of the yield point. Calculations of Case

2 are intended to show this. The pressure dependence assumed

is that the value of Y, the uniaxial yield stress, (which is

2.76 kb in the initial state) is increased by 0.03 kb for

every 1 kb rise in dilatational stress, or mean pressure.

The only change, then, from the equations of Case 1 is as fol-

lows:

Plastic loading - l.O2p + 1.84 kb

Plastic unloading T = 0.98p - 1.84 kb
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Case 3. It is argued in Sect. 6.3 that it is not

possible to describe the strain hardening of a metal with a

single parameter. However, the effects of strain hardening

may be judged (since they prove to be small) by taking the

hardening, or increase in the yield stress, to be a function

of the total plastic work. We have in this case arbitrarily

assumed the increase in the value of Y to be proportional to

the total plastic work per unit volume W .P

The formulation of the constitutive relations fol-

lows the theory set out by Fowles. 9 We write

dW = 2 Y~E 1dp Y7 d x  - TG-dY

and

dY = TNdW

where E is the axial strain and G is the shear modulus. Thex
following constitutive equations result.

Plastic loading T = p + 2/3Y

Plastic unloading T = p - 2/3Y

where in the finite difference formulation Y is calculated

thus:

If a mesh point is elastic at time nLt, yn+fi =yn

If a mesh point is plastic and loading at time nLt,

y n+1 fyn + 2Yn(e ' n)
3-. n+i _ n ) + Iyn

nI-G

If a mesh point is plastic and unloading at time nAt,
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y + - yn(,n.e

3 (,n 1 + yn
T1 G

We took

YO = 2.86 kb

G = 249.2 kb

n = 10.0

The stress-strain curve in simple tension for this

hardening law is shown in figure 6.2.

Cases 4.1, 4.2. The way in which a strain-rate ef-
fect can be included in the constitutive equations is de-
scribed in Sect. 6.1. For reasons set out in Sect. 6.2, we
chose a strain-rate function as follows:

g = a exp (b -)

where T is the von Mises effective overstress. It is not

possible from data presently available to put values on the

constants a and b for aluminum. We expected, however, that

a value for g of the right order of magnitude would be ob-

tained by taking a = 10 kb'1 sec -1 and b = 5.0 kb- .

Unfortunately we have not yet been able to run a

calculation satisfactorily with these values for a and b, as

they lead to stress relaxation rates which cannot be assumed

constant during the smallest time increment for the calcula-

tion which can reasonably be used. Until the machine program

has been modified to take care of this, only values for g

that give relaxation rates which are reasonably constant in

the time increment used for calculation can be accommodated.

We have run calculations for two different strain-rate func-
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tions, which satisfy this requirement.

In Case 4.1 we took a = 100 kb 1" sec -1

b = 0.5 kb-

In Case 4.2 we took a = 300 kb "' sec-1

b = 1.5 kb "

The overstress T is calculated thus:

33

If Y < ( ) -- p , = ( -- p) - Y

If-Y j (---p) Y, = 0

f-3 2 (r _ p) + y
if ('- p) < - Y, -f (= -P

It should be emphasized that these cases are not

intended to represent the behavior of a real material. We

can, however, expect the behavior of aluminum to lie between

Case 4.2 and the strain-rate independent Case 1.

For all cases, the fracture stress was set at

- 10.0 kb. As will be seen from the results, Case B fractured

and Case A did not, except for Case A4.1. Also, in all cases

an artificial viscosity was introduced to ensure stability and

smoothness for the finite-difference machine calculation de-

scribed in the Wave II report.5 2 The values used for the co-

efficients described therein were A, = 2.0, B1 = 0.125, A2 = 0,

B2 = 0.

From the machine output, three quantities have been

plotted against time; the interface stress, the rear surface

position, and the rear surface velocity. Representative re-
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suits are displayed in figures 6.3 through 6.9. It may be of

help in the interpretation of these figures to refer to the

characteristic diagram figure 6.10. This Lagrangian charac-

teristic mesh in the x - t plane shows the wave fronts for

Case A and a linearized elastic-plastic behavior.
6

The conclusion to be drawn from a study of the re-

sults of the calculations is that none of the measurable quanti-

ties, impact face stress or rear surface velocity or position,

differ sufficiently in the different cases to provide a measure

of the effects on yielding which we are considering.

A preliminary comparison is possible with data pro-
53

vided by C. D. Lundergan of Sandia Corporation. The measured

rear-surface displacement vs. time is plotted in figure 6.11 where

it is compared with the calculation for Case Al. It may also

be compared with figure 6.3 and 6.4. It is clear that an experi-

ment of this type is not suitable to resolve between the be-

havior assumed for Cases Al, A2, A3, A4.1 or A4.2.

From the information in this section, it may be con-

cluded that the values of yield stress and rate-dependent over-

stress may be determined only very approximately from uniaxial

strain experiments, which provide sufficiently simple boundary

conditions to permit solutions to be obtained. In one respect

this is encouraging, for it means that the behavior can be ade-

quately described by a simple rate independent elastic-plastic

constitutive relation for cases of uniaxial strain at low

stresses. On the other hand, the rate independent description

is expected to be inadequate on physical grounds. For other

configurations, the simple rate-independent theory may be inade-

quate, but solution methods must be developed for other configu-

rations before they can be investigated.
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Figure 6.9. Impact face stress for all Cases A and B.
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1 AFMTC (MU-135), Patrick AFB, Fla

1 APOC (PGAPI), Eglin AFB, Fla

1 RADC (Document Library), Griffiss AFB, NY

KIRTLAND AFB ORGANIZATIONS

AFSWC, Kirtland AFB, NM

1 (SWEH)

25 (SWOI)

2 (SWRPA)

1 (SWRPL)

1 (SWRPT)

1 (SWRA)

1 ADC (ADSWO'), Special Weapons Office, Kirtland AFB, NM

1 ATC Res Rep (SWN), AFSWC, Kirtland AFB, NM

1 AFLC, Albuquerque Ln Ofc (MCSWQ2), AFSWC, Kirtland AFB, NM

1 SAC Res Rep (SWL), AFSWC, Kirtland AFB, NM

1 TAG Liaison Office (TACLO-W), AFSWC, 'Kirtland AFB, NM

1 US Naval Weapons Evaluation Facility (NWEF) (Code 404),
Kirtland AFB, NM
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OTHER AIR FORCE AGENCIES

Director, USAF Project RAND, via: Air Force Liaison Office,
The RAND Corporation, 1700 Main Street, Santa Monica, Calif

1 (RAND Library)

1 (Dr. Olen Nance)

1 (Mr. Jack Whitener)

1 Aerospace Defense Systems (ADO) ATTN: ADSO, AF Unit Post
Office, Los Angeles 45, Calif

ARMY ACTIVITIES

1 Chief of Research and Development, Department of the Army,
(Special Weapons and Air Defense Division, ATTN: Maj Baker),
Wash 25, DC

1 US Army Materiel Command, Harry Diamond Laboratories
(ORDTL 06.33, Technical Library), Wash 25, DC

1 Commanding Officer, US Army Office of Special Weapons

Development (USACDC), Ft Bliss, Tex

1 ARGMA Liaison Office, Bell Telephone Labs, Whippany, NJ

1 Redstone Scientific Information Center, US Army Missile Command
(Tech Library), Redstone Arsenal, Ala

Director, Ballistic Research Laboratories, Aberdeen Proving
Ground, M d

1 (Mr. Ed Bailey)

1 (Dr. Coy Glass)

Commanding Officer, Picatinny Arsenal, Samuel Feltman
Ammunition Laboratories, Dover, NJ

1 (SMVPA-VA6)

1 (Mr. Murray Weinstein)

I Research Analysis Corp., (Document Control Office), 6935
Arlington Road, Bethesda, Md., Wash 14, DC

I US Army Office of Ordnance Research, Physical Sciences Div.,
Box CM, Duke Station, Durham, NC.

1 Director, Army Research Office, Arlington Hall Sta, Arlington, Va

1 Commanding Officer, US Army Engineers, Research & Development
Laboratories, Ft Belvoir, Va
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NAVY ACTIVITIES

1 Chief of Naval Operations, Department of the Navy (OP-36),
Wash Z5, DC

1 Chief of Naval Research, Department of the Navy, ATTN: Mr.
James Winchester, Wash 25, DC

1 Commanding Officer, Naval Research Laboratory, Wash 25, DC

1 Chief, Bureau of Naval Weapons, Department of the Navy, Wash
25, DC

1 Commander, Naval Ordnance Laboratory, White Oak, Silver
Spring, Md

2 Director, Special Projects, Department of the Navy, ATTN: Mr.
Don Williams, Wash Z5, DC

OTHER DOD ACTIVITIES

Chief, Defense Atomic Support Agency, Wash 25, DC

2 (Document Library)

1 (DASARA, Lt Col Singer)

5 Director, Weapon Systems Evaluation Group, Room ZE1006,
The Pentagon, Wash 25, DC

1 Director, Advanced Research Projects Agency, Department of
Defense, ATTN: Col Innes, The Pentagon, Wash Z5, DC

1 Director, Defense Research & Engineering, ATTN: Col Gilbert,

The Pentagon, Wash Z5, DC

20 ASTIA (TIPDR), Arlington Hall Sta, Arlington 1Z, Va

1 DASA Data Ctr, TEMPO-General Electric Company, P.O.
Drawer QQ, Santa Barbara, Calif

AEC ACTIVITIES

1 US Atomic Energy Commission (Headquarters Library), Wash 25, DC

Sandia Corporation, Sandia Base, NM

2 (Technical Library)

2 (C. D. Lundergan (Org. 7161-Z))

2 Sandia Corporation (Technical Library), P.O. Box 969, Livermore,
Calif

1 Chief, Division of Technical Information Extension, US Atomic
Energy Commission, Box 6Z, Oak Ridge, Tenn
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1 University of California Lawrence Radiation Laboratory (Technical
Information Division), P.O. Box 808, Livermore, Calif

I University of California Lawrence Radiation Laboratory, ATTN:
Mark Wilkins, Berkeley 4, Calif

4 Director, Los Alamos Scientific Laboratory (Helen Redman, Report
Library), P.O. Box 1663, Los Alamos, NM

1 Brookhaven National Laboratory, Upton, Long Island, NY

1 Argonne National Laboratory (Tech Library), Argonne, Ill

I Oak Ridge National Laboratory (Tech Library), Oak Ridge, Tenn

OTHER

1 Institute for Defense Analysis, Room ZB257, The Pentagon, Wash
25, DC

1 Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio

I Institute of the Aerospace Sciences, Inc., 2 East 64th Street, New
York 21, NY

z Aeronutronic, Division of Ford Motor Co., ATTN Drs. Montgomery
Johnson and R. G. Allen, Newport Beach, Calif

I E. H. Plesset Assoc., Inc., ATTN: Dr. Harris Mayer, 1281
Westwood Blvd., Los Angeles 24, Calif

1 University of Rochester, ATTN: Dr. Harold Stewart, Security
Officer, Rochester 20, NY

2 Stanford Research Institute, ATTN: Drs. Duvall and Fowles, Menlo
Park, Calif

1 General Electric Aero Sciences Lab, ATTN: Dr. Stag, 3198
Chestnut Street, Philadelphia, Pa

AVCO Corp, Research & Advanced Dev. Div., Z01 Lowell Street,
Wilmington, Mass

1 (Dr. W. L. Bade)

2 (Dr. Dean Morgan)

1 Aerojet-General Corp., ATTN: Mr. Kreyenhagen, 1711 S. Woodruff
Avenue, Downey, Calif

I The Boeing Co., Aerospace Division, ATTN: Dr. Glenn Keister,
Seattle 14, Wash

I Lockheed Missile & Space Company, ATTN: Mr. Milton McGuire,
Sunnyvale, Calif

I Southwest Research Institute, ATTN: Dr. G. Nevill, 8500 Culebra
Road, San Antonio 6, Tex
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1 Technical Operations, Inc., ATTN: Dr. Kofsky, Burlington, Mass

1 Kaman Aircraft Corp., Nuclear Division, ATTN: Dr. A. P. Bridges,
Colorado Springs, Colo

I Space Technology Labs, ATTN: Dr. Herman Leon & Mr. Jackson
Maxey, P. 0. Box 95001, Los Angeles 45, Calif

Aerospace Corporation, Los Angeles, Calif

1 (Dr. Domenic Bitondo)

1 (Dr. George Welch)

1 (Dr. Robert Cooper)

1 (Mr. H. C. Sullivan

1 (Dr. W. Loh)

1 (Dr. G. A. R. Graham)

1 General Electric, Defense Systems, ATTN: Mr. A. Sinisgalli,
Atlantic Building, Syracuse, NY

1 General Electric Company, MSD, ATTN: Mr. J. Spencer, 3198

Chestnut Street, Philadelphia 4, Pa

1 Official Record Copy (SWRPA)
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